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P CHAPTER 1 ‘~
W | INTRODUCTION it
o B
‘: Various methods have been attempted to predict the cold circuit ".;
:::3 characteristics of coupled cavity circuits for traveling wave tubes. These :‘,
Eé‘i methods include approximate field analyses [1] and lumped element equivalent ‘EE
i circuits [2]. None of these mefﬁods can predict the circuit characteristics 32:‘
':‘: to a high degree of accuracy. The result is that the circuit design procedure ,;
::g includes physically building and measuring a "first-cut" circuit, and making %:‘
;' modifications to obtain the final product. These modifications include both -n'_;f
2%:: engineering and machining costs. 9
?: With the advent of large digital computers with low price/performance ?{I’:
4 ratios, and the development of numerical techniques for efficiently handling l'(ﬂi
;,:,i the massive amounts of data storage necessary for self-consistently solving '{5:
‘;ﬁs Maxwell's equations with sources, it has become financially feasible to make ‘
"? use of computer codes which perform three-dimensional "numerical experiments." ..v:':
'E:f;w Codes of this type have been used for a number of years in Plasma Physics, ‘,:;:;
E::: and particularly for EMP calculations. f’:}g
’ This study makes use of a three-dimensional plasma simulation code ";’:'
:‘;‘i: called SOS (Self-Optimized Sector) [3], developed by Mission Research Corporation. \_'
::: By making certain modifications to the source models and using the output ..'f:;
'-* data of the code as input to a Fast Fourier Transform routine, it was possible o
&: to perform numerically the resonance tests by which a circuit's Brillouin "'E
‘E:é. plot is typically found. ;
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Chapter 11 will introduce the code and its method, which is a great

contrast to the eigenvalue approach used in codes such as Superfish [ﬁ].

Chapter |1l discusses the various source methods which were used. In

Chapter |V various test cases are discussed which establish the validity of

the method. Chapter V gives the results of a staggered-slot, coupled cavity

circuit, and compares these to measured values. The problem of resolution y
and an apparant numerical instability are discussed in Chapter VI, with an
eye towards cost effectiveness. Chapter VIl gives a summary of results and
recommendations for further study. In Appendix A, the second order accuracy
of the non-uniform grid, centered difference derivative method is proved.
Appendix B gives a derivation of the Discrete Fourier Transform pair. The

equations necessary for fitting a cubic least squares with boundary condi-

tions (zero first derivative) are developed in Appendix C.
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i THE COMPUTER CODE "R
";"\ Ly
R :-
‘i:%‘ .{}
s
g; The SOS (Self-Optimized Sector) code [3] is a fully three-dimensional, 30
o %
.:"' electromagnetic, simutation code designed for applications in plasma physics m‘:
;i"‘! » A‘
. involving charged particles and electromagnetic waves. S0S solves the time- \
,;'.?,' dependent Maxwell equations in finite difference form and uses particle-in- !
i|‘ " +
;:‘;g cell (PIC) methods to compute current density sources. Particle trajectories b";
' )
A O
" are computed using the relativistic equations of motion. The code was ori- 3‘
o ginally developed to run on the COC Cyber 176. Later revisions have been 11
) \.); .g-' d
o35 made to the code to allow it to function on the Cray-1 and the DEC 11/780 ;? :
”-:'y },"
! (VAX) computers. This project was performed entirely on a DEC machine. f
< This study dealt only with the "cold-test" of a coupled-cavity Q.,
{‘ ‘\.'“
_.{ circuit, so we need only concern ourselves with the electromagnetic part '{. v
W ™
E) of the code. 4
0 Maxwell's equations are 0
2
‘0" ]
iqred -— AW
t" ) T = - aB = .a_D- *
e VxE =T VxH at’j (n o
®
XS vV-B-0 v:'D-=-op 1
0 A
:ﬁ . The first two of these completely define the temporal evolution of the ::;:*
¥ N
w‘?,{ fields. The second two may be viewed as initial conditions since they ‘
i) deal with conservation of magnetic and electric charge, which, if satis- TN
:§ fied initially, will be satisfied by all subsequent fields generated by 5;
) - g
‘,' the first two equations. ;2,
®
% 3
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In component form, the two curl equations become

3tE1 = -€d'Jy + (mogohzhs)? {92(h3Bs) - 33(h,B2))

94€2 = -35'J2 + (ocohshy ) {33(h1B;y) - 3)(h3B3)}

34Es = —egtJs ¢ (Wo€ohih27* {31(h2Bz) - 32(hB1)} (2)
34B1 = -(hz2hs)? {82(hsEs) - 33(h2Ez)}

34B2 = -(hahy ) {33(hiE1) - 3,(h3Es)}

3;Bs = ~(hh2)? {31(h2E2) - 32(h1E})}

Where d; denotes the partial derivative with respect to the i*h

coordinate, and the coefficients, hj, are the differential length elements

in the coordinate system of interest, e.g.

in rectangular coordinates: hi=1; hz=1; hs=1
in cylindrical: hi1=1; h2=r; ha=1
and in spherical: hi=1; hz=r, hz=rsin®,

One can apply various finite difference schemes to these equations
based on accuracy, convergence, and cost considerations. S0S contains
four finite differencing algorithms from which the most appropriate for
a given application may be chosen. Of these, two deal with regions of
temporally and spatially varying conductivity and need not be considered
for our application. A third algorithm uses the centered difference formula
for the spatial derivatives, but Is implicit in the time domain of the
magnetic field. That is, a "guess" at the future value of the magnetic
field 1s used to calculate the current electric field. This electric
field is then used to calculate the next magnetic field value which is

compared to the guess. By adjusting the guess appropriately, the algorithm



3] converges to the desired field values. The fourth method is a straightforward

;a centered difference. 1In this approach, the electric field is found exclusively
. from the previously calculated magnetic field values. It is therefore explicit
{. so that no iterative procedure is needed.

}: Although the third approach will yield more accurate results, it is

? clearly a more expensive method. For this reason, the explicit, centered

'; difference algorithm was used for calculations in this report, This method

;; can be shown (see Appendix A) to yield second order accuracy to the true

; derivative, while retaining a fairly flexible grid spacing requirement.

;; S0S contains the option to sample any of the field components at a

ﬁ‘ fixed point in space as a function of time. This is accomplished by reading

‘: the field amplitude at discrete points in time of fixed interval, and writing
;Q the result to an output file. 11 is straightforward then, to apply a Fourier
Qﬁ Transform to this data so as to obtain the frequency characteristics of the

.

device under test. To this end, we introduce the Discrete Fourier Transform

\ pair [5]

§ -
". E(m) = 2 E(n) e-J(zn"/N)m m=0’ 1’ 2' s sy N-1

R n=0

f,
X N-1 . i i
y e(n) = I E(me J(Zmm/Nin n=0, 1, 2, ..., N-I
: m=0

-
L

where N is the number of samples taken. (See Appendix B for a derivation

»
. £

of the DFT pair.)
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A

If we define to as the sampling interval, then we have i}}ﬁﬁ
<:.4:.Q.-
mtq n o

f'T and f=m

Notice that Nt, is the total time through which the fields have been tracked

Pt O S Tl e

in our numerical experiment,

The cost (CPU time) of a simulation is determined primarily by two

- o

factors: the number of grid points, and the number of time steps. Obviously,

we want to minimize both in order to keep the cost down. The first is limited

EERPY W N

by the requirement to fully define the physical details (e.g. corners) of the
structure. The number of time steps is more complicated, as it is a function
. of several factors.

The spacing in frequency space is determined by the total time of

the run, i.e.
1

 J—

© Nto

' Therefore, for a desired value of fo, we can keep N small by making to large.
However, in order to have stability, tg is bounded by the Courant Stability
Criterion Bﬂ

2

3
1 1

— > | ——

Cto i=1\NiS xi

where the h; are the coefficients of the differential length elements defined

above, and the Ox; are the differential length elements. For example, in

]2 12 ‘2 ]2
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‘;;2‘ The final factor to be considered is that in order to use a Fast j’-;‘\_L
K SN¢
Fourier Transform, f, and t, must be chosen so that N is an Integer power of Nte
L XN
;}: two. This last consideration did not pose any problem in this study because N '
.i. :$ i
2 if the "power of two" restriction was inconvenient, the FFT could be replaced ::;f
" ' Rt
v by a Discrete Fourier Transform (not fast). The extra cost incurred by this Ll
iy it
‘:: change was insignificant in comparison to the cost of running the plasma '
Nl o0
i simulation. A
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SOURCE CONFIGURATION

t. & b W
Py 13
"‘i:" {]
KA )
& Ko
:-2&,{- |'
N The sources available in the code (S0S) were not suitable for our

R 0
f,‘::' purposes, so the approach used was to manipulate one component of the Q‘- '
PRI v
;‘6: electric field at various points in space. This was accomplished by ‘?E
» 1
" adding the desired source (e.g. a point source oscillating at a desired

L) N
;;;‘,:" frequency, or a point impulse function) to the existing field value as a e
Y :' o
" "correction" term. o
ok N
" This approach allowed for a good deal of freedom in coupling to the
”’ desired resonance. |In fact, it was possible to change the coupling separately :C
¥, \
ﬁ in physical and frequency space. By using an impulse as the source, all fre- )
v quencies were excited. |f the impulse was tailored in space to fit the .
.A"“ A", h
::":, desired field pattern (which is known in the case of a simple cavity) then N :
"lgl! wid
::.. the code no longer sees this as an impulse, but rather as initial conditions. . )
"..' E -
:"'j" This is because we are using the algorithm (see Chapter |1) which is explicit,

iy NX)
E;'::i and our source is being artificially added to the existing fields. When we ; ;
o (4
::33: adjust the field values at all points in the volume simultaneously to ‘:::
A .: .”s'
' exactly match one mode, then there are no steps in the field in physical -
A\ :
“4 space, and the code does not see the step in time, but rather treats it Pl
] ' 'l
::':a as if that mode had always been there and we get a single spike in the ;{
. fregquency spectrum. -
v Mo
:3&‘5 Regardless of what type of source is used, the energy going into E;‘
W e
::: the system will try to resonate in the natural modes of the system. Most -
L) ot
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®
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i .
::g‘ of the energy, in fact, should go into the natural mode which we are the 3 '.!
:: X closest to, with respect to frequency and field shape. 2
‘;.‘:; Since the field shape is known exactly in a simple cavity, and fg*‘;;
iﬁif approximately in a reentrant cavity, initial conditions proved to be a good &é
3:';‘ way to find the primary resonance. Having a source point oscillating at a .gf
::,’: frequency close to the desired resonance also provided good results. ,
§§§ Figures 3.1 and 3.2 show the frequency spectrum of a simple and
3:':! reentrant cavity, respectively, in which a point source oscillating at a :""
i::: frequency close to the primary resonance was placed. Notice that the ’”‘i&
shape of the curve in each case is basically that of a peak at the primary ”é
? resonance, with the source and higher order resonances superimposed upon it, 04
;':% Figure 3.3 shows the spectrum, after a beam hole was introduced. Notice :: 1
‘*:}‘:‘.l that now the shape of the curve has changed significantly and there is E
:" “ energy at zero frequency which is comparable to the amount at the primary X ;
e“: resonance. After introducing the slot, while still using a point source, .'C
3: Figure 3.4 shows the zero frequency amplitude to be considerably above .“:s
‘ the primary resonance. In this latter case, if we look at higher frequencies, ‘!~“
E‘i as in Figure 3.5, we see that the code is predicting an incredible amount of \_x
'E::E: energy going into some higher order mode (about 46 GHz). This high frequency :{.
; problem is not true for the "no-slot" case, as shown in Figure 3.6. ;::*
E:.l From these figures, it is evident that the predicted spectrum is not :
é:: physically realistic for either the case of a half-cavity with a beam hole, I%E
: or a half-cavity with a beam hole and 80° slot. Three possible methods of i
;5: improving the simulation come to mind immediately. First, the number of ::
-::: grid points might be increased to improve the accuracy of numerical ::
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l! derivatives. Second, the source might be placed at the resonant frequency ;:.‘:‘i.‘:
,‘:f (i.e. Improve the coupling in frequency space). Finally, the source might .
é be tailored to fit the field shape of the desired mode (i.e. Iimprove the &
coupling in physical space). "'-
‘: The first suggestion, improving the grid, did change the results, i
;' but did not solve the problems mentioned above. This can be seen by g:i{
}' comparing Figure 3.7 to Figure 3.5. The second suggestion amounts to knowing Egé
.:" the solution to find the solution, so it is not usable. The third idea B
ﬁ is useful, because we know the desired mode has a concentration of electric ",:Eiﬁ
;:E field across the ferrules, so it seemed reasonable to change from a single ::é;:}%
;! point source to a ring of sources located at all grid points between the 9!"9:;:
;' ferrules. This method solved the anomaly of having large amplitude at ;3’::;22
; zero freguency, as shown in Figures 3.8 and 3.9. However, it did not ;g%:
' solve the high frequency problem for the cavity with a slot, as shown in :’%3'
f Figure 3.9. : ,é.é
§ With these improved results, it seemed good to observe the effect t
K of our other two suggestions. Figures 3.10 and 3.11, with a finer grid, _—
;“:: may be compared to Figures 3.8 and 3.9. Figures 3.12 and 3.13, in which the .233’:5‘
::' source is placed at the resonant frequency, may be compared with Figures ;ii,;:
R 3.8 and 3.9. In each case, the change does not affect the result of !:“"“‘
}.I- interest, which is the detection of the primary resonance and its location, %""
: i
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1T 2 3 4 6 6 7 8 @ 10 11 12 13 14

F (GHZ)

FIGURE 3.1 - Amplitude vs. Frequency in a simulation of a simple
cavity in which the source was 2 point, oscillating just below
(in frequency) the primary resonance. Note that the shape of
the curve is primarily a peak at the desired resonance, with

+he source and higher order resonances super imposed upon it.
“imensions are inches.
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. MODIFIED
i TM°1° FROM
i SOURCE— MORENO (4.2 GHz)
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b
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.’ib‘: e

FIGURE 3.2 - Amplitude vs. Frequency In a simulation of a
reentrant cavity of indicated dimensions. Again, a point
source was placed just below the desired resonance, which
was known from Moreno's curves [8]. The curve is not as

R smooth as in the previous fiqure, but the primary resonance
"y is predicted by the code to be just where we expect it.
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o CAVITY WITH BEAM HOLE

o SOURCE

1 1 1 1 1 ! 1
4 6 8 10 12 14
F (GHz)

] @ SY

FIGURE 3.3 - A reentrant cavity after the inclusion of a beam
hole. The extension of the beam hole is to account for the wall
thickness between cavities. In this case, no predicted value for
the resonance was available, but as can be seen from the figure,
the source was placed stightly above the resonant frequency.
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e FIGURE 3.4 - The final step to modeling a half cavity is the
s inclusion of the coupling slot. This lowered the resonant

N frequency slightly, and changed the overall shape of the curve
L J dramatically. 1t should be noted that this step makes the

o problem a truly three-dimensional one.
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CAVITY WITH 80° SLOT"

1 1 ) 1 1 1 1

0 10 20 30 40 50
F (GH2)

FIGURE 3.5 - This figure is the same as Figure 3.4, but it shows
all of the data obtained from the FFT (not just 0-14 GHz as in
the previous figure). Two properties of this curve are somewhat
disturbing. First the large amplitude at zero frequency, and
second the large amplitude at high frequency.
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=

K FIGURE 3.6 - Extended view of Figure 3.3. None of the high
l.:: frequency problem is present here, but the large amplitude at zero
® frequency is.
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in fact it has made the zero frequency amp | itude considerably RN
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ring of points in the 8- plane corresponding to the ferrule e
(i.e. improving the coupling to the desired mode in physical
space), the zero freauency problem of Figure 3.6 was eliminated.
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zero frequency amplitude was reduced to a reasonable value for
the cavity with the slot., It is evident, however, that this
did not help the problem at high frequencies.
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CHAPTER 1V
RESULTS

As illustrated in the previous chapter, the approach used in this
project was to check the accuracy of the code (SOS) and the FFT routine
against simple test cases, and work towards the desired structure. The
obvious choice for a first test case was a right-circular-cylindrical
cavity. There are two reasons why this was a good choice. First, the
results could easily be compared to the thecretical solution [7], and second,
a relatively small number of grid points accurately represented the structure
so that test runs on the code were inexpensive.

Accurate results were obtained for the simple cavity case (less than
1% error), so the next logical structure was a reentrant cavity., A
reentrant cavity, which had a variable inner conductor height, was available
10r measurement. The calculated (by S05) and measured values are shown
versus inner conductor height in Figure 4.1. In all cases, the measured
value agreed with the value given by Moreno's curves Bﬂ to two digits
(which is the Limit of accuracy of the curves). The error of the calculated
value from the measured value varies from 0.9% at h/L=0 to 4.8% at h/L=5/6.
The true error, i.e. between the simulation and the lossless cavity which
it simulated, was probably less than indicated by these measured values.

The reason for saying this is that the reentrant cavity with h/L=0 is really
a simple cavity, and the theoretical resonance was between the calculated
and measured vatues. The calculated value was only in error by 0.2% when

compared to the theoretical value at h/L=0.
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z
;;'.' After inserting a beam hole and a coupling slot, our structure is '-{
“'.:9 one half of a coupled cavity, whose resonant frequency is the upper cutoff Wt
;‘::'; of our structure. (Actually, this is one half of an "in-line" slot coupled ”":
\,, cavity. However, the change in resonant frequency of a single cavity in r;]
Ff‘:f which the slots were in-line as compared to one in which they were staggered ,:J
E?:: was measured as less than 0.5%.) Figure 4.2 shows the measured and predicted .:%i.
s:: (S0S) resonance values at various stages of cavity development. It is v‘;
A_‘.“t interesting to notice that the accuracy becomes significantly worse when Wit
'j the slot is introduced. This is, in fact, the point at which the problem :
’.E}.; truly becomes three dimensional (it has up to this point had circular ':E?:
t" symmetry). |t should be pointed out that the predicted values in Figure 4.2 .'::!:'
:: are actually the center point of error bars (for reasons which will be :::'::;
;3 explained in Chapter V), but for clarity only a point is shown at this ::h:;:
X stage. Although the predicted upper cutoff value is in error by approxi- v..
'::" mately 5% (% uncertainty), we are getting a distinct resonance which ~ §
é‘:' encourages us to try to find more points on the Brillouin curve, l"
i'.): Simulations of multiple cavities were performed, which predicted :’
;Ei' multiple resonances as expected. Two cavities with the grid overlaid :;;n:
:'g:u are shown in Figure 4.3, Notice the non-uniform grid, as mentioned in ,'}:'
:.‘:‘ Chapter 1, and justified in Appendix A, These multiple cavity runs were :‘p
“';;: all done with a ring of source points between the ferrules in one cavity 3_;
‘?' only, oscillating at a frequency below the resonances. Figure 4.4 is the %}
. resulting predicted w-B., The solid lines are drawn through the physically ;-‘ '
;:; measured values, |If the best end of the error bars is taken as the ,&.,
Ei: predicted value, then the worst error is about 3%. Taking the worst end r‘-.
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of the error bars, the predicted value is off by 6%. Therefore, the worst

C

-
o~

-

error Is somewhere between 3 and 6%. Although this is a disappointingly
ltarge value for the error in prediction, it does represent a slight improve-
ment in phase velocity prediction over typically used equivalent circuit
techniques. In Chapter VI, it is noted that by application of a "least
squares" cubic to the data, this error can be significantly reduced. For
most applications, the upper and lower cutoff are not the areas of interest.
The area in which we would desire the most accuracy would be centered about
Bp=1/2, say from n/3 to 2n/3. In this reduced region, using the least
squares curve, the error is everywhere less than 1%. This seems to be a

very satisfying result.
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FIGURE 4.1 - Measured and calculated (by the code) resonant
frequencies of a reentrant cavity with various values of

inner conductor height (h). ALl dimensions are inches, t
the two radii and the cavity length are fixed, the inner
conductor height being the only variable. '
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) FIGURE 4.4 - The Brillouin plot of coupled-cavity circuits with
M4 the indicated coupling slot angle. The calculated values are
single data points predicted by a particular run with uncertainty
shown by error bars (see Chapter V on resolution).
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CHAPTER V
RESOLUTION

Figure 5.1 shows an analog signal which is just resolved by the
common 3 dB definition. |f discrete samples of the signal are taken, as
shown in Figure 5.1, at regular intervals of f,, where f, is comparable
in magnitude to the width of the peaks, then we see (in Figure 5.2) that
the discrete samples are not resolved by the 3 dB definition. Furthermore,
we cannot determine from the discrete samples exactly where the peak is
located. We can, however, say that the peak is within half the sampling
width of the local maximum sample. With these two factors in mind, we
have defined in this study a discrete sample to be resolved if there exists
a sample which is a local maximum. That is, if the sample is greater than
both of its nearest neighbors. Furthermore, we will say that the peak is

"resolved to fo." That is,

f f
fmax - 7? < fpeak < fmax + 1; ) —
;E?
We have seen that the spacing in frequency, f,, is determined by ;t%
"
the total run time, Nto. M.
o g,
he
. .‘_1
Therefore, the total run time should be long enough to resolve the ]

resonances in two ways. First, if more than one resonance is expected,
then fo must be small enough to allow both of the peaks to be local

maxima. Second, f, must be small enough to determine the location of
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R each peak to reasonable accuracy. One would expect then, that the Limiting
‘{3 factor In resolution would be the cost associated with run time.
4
"\t The limiting factor for this study, turned out to be an instability
PV
{; in the calculations. For an undetermined reason, It was found that the
f«s higher frequencies grew in amplitude much faster than the low ones. When
Y
‘: these high frequencies became extremely large in amplitude, the Llower
4‘~‘
™ frequencies (which were in the range of interest) were obscured by them.
Figures 5.3 through 5.5 illustrate this probltem. In Figure 5.3, the source,
v
o at 3.0 GHz, and the lowest resonance, expected just below 4.0 GHz, are not
N f yet resolved due to the large size of the fregquency spacing (0.4 GHz).
®
y After doubling the run time, Figure 5.4 shows that the source and primary
g
f? resonance are resolved, but most of the energy is now in the higher
L frequencies, with the major resonance at about 46 GHz. Figure 5.5 shows
K that after again doubling the run time, the source and primary resonance
3
N are now totally obscured by the resonance at 46 GHz.
S
:5 Since this instability was one which grew in time, it was possible
J
P to perform one long run and take the data for the FFT from time zero up
b "
{i until the instability just obscured our desired results and then truncate
)
?h- all following data. This was the method used to obtain the w-B plot shown
®
\ in Chapter V. In order to obtain the data shown there for the 160° stot,
- two runs were performed which modeled three and four cavities, and gathered ~
‘\’; ."I ‘;‘1
bk slightly more data than could be used (due to the instability). These O
e runs were performed at a total cost of tess than $150. =
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

It has been pointed out to the author, that the shape of the predicted

w-B is quite unlike the curves which are characteristic of staggered slot
coupled cavity circuits (first derivative zero at Bp=0 and m, and the
second derivative changing signs at approximately Bp=n/2). While this
objection is true, it is a fact that may be used to one's advantage. By
applying a least-squares fit to a cubic function with zero first deriva-
tives at the end points (see Appendix D), it is possible to determine a
curve which is fairly close to the measured one. Figure 6.1 demonstrates
this method, where the center points of the error bars has been used for

the data in equation C.2, The predicted curves look very much as expected

now. The maximum error, which occurs at the upper cutoff of the 160° slot,

is now about 3.9%.

While this project has suffered from some problems, especially in
getting a desirable level of resolution, we have obtained our primary
objective. That is, we have shown that an existing plasma simulation
code may be used to predict, Yo a fair degree of accuracy, the cold cir-
cuit characteristics of a microwave circuit,

A very promising result is that the accuracy was not cost-limited,
but rather was Limited by the stability problem as explained in Chapter V.

This is promising because if we were cost-limited, we would be at the
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’ mercy of the computer industry. That is, no further significant progress

1f v
;" could be made until a faster, more efficient computer was built., As is, KA
- L" -

. 4 o]
) there is good hope of solving the problem and going on to improved *;
i i%
. sotutions, o
1:" ;"Q!
‘ We give now some cost figures to illustrate the typical expense of i
X et
) this method, The two runs (three and four cavities) needed to find the } :
g XN
’ data for the 160° slot shown in Figure 6.1 were performed at a combined -
3, "l‘l
" cost of under $150. These runs were performed overnight in batch mode }{.‘\
AN W
:' on a slow que (low priority), which results in a charge of $12 per CPU ‘.:
("‘. .‘..
' hour. Therefore, the two runs required about 12 CPU hours on the VAX —
;v 11/780. This machine has a speed of approximately 0.5 Mflop.
i Future investigation should yield solutions to the high frequency
D
[0

instability. The solution may be a combination of changing source

' methods, grid location, and applying low-pass filters to the fields in gy
|! _.:\,'-..’
> the numerical algorithms, ?._'-‘,ji
: r-y
DR ik ) )

Subsequent to the completion of this project, the high frequency

&
‘I
Ay

“z noise problem experienced by the author was verified in a run performed Pt
1 )
g by MRC personnel. |t should be noted that this problem is unique to §::
25 )
] XY
™Y the cylindrical coordinate version of the code. The rectangular version

: o
“% has been in existence for some time, and due to numerous test cases, there t%‘
b s
(4" is a high level of confidence in its accuracy. Further work is currently fr o
"
v . . Y
® being done at MRC to determine the source of this problem and to alleviate it, Al
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K APPENDIX A

il A DERIVATION OF THE SECOND-ORDER ACCURACY
‘ﬁ OF THE CENTERED-DIFFERENCE DERIVATIVE
FOR A NON-UNIFORM GRID

4 This appendix shows that, under certain conditions, the centered

difference approximation to the derivative of a function will be accurate
X to second order without the restriction of a uniform grid. The signifi- o
$‘ cance of this fact is that it demonstrates both the flexibility and the .
i integrity of the field algorithms used in this study. MY

P~ The centered difference formula is given by \gs

)
Y

13 . f(xje1)=f(xj-1) t
F(Xi)= &
Xi+1=Xj=12

where f denotes the true function (whose values are known) and F' denotes

g
) o
'y the approximation to the true derivative f' (whose value is not known), j}{
ﬁ; Now, if all derivatives of f exist on the interval xj- <x<xj,,, then f may ?ﬁ?
. 1A
F? be expanded in a Taylor series by defining '
o "‘:v
:‘: hi = Xi-Xi_l :’:!‘:'
s e
R so that Wit
K
‘ x-_ :x.—h-
3§ 1= | I
\ -
DA Xi+1=xi’hi*1~ z;g
5'. R
g: Then the expansion is & ;
r“ h ? h ? '
:.: f(x;-hj) = f(x;)=-h;jf’ (xl)+—§-f"(x1)-3'— ' (xq)e gi
R\ 3
& hid, ., hid S
:;::' fix: th*l) = f(xi)’hi*lf'(xi) o___z-—_f'(xl) *—ST_f"'(X])*... ﬁi‘.
‘ W
ﬂa: and the numerical derivative is e
K ¥
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B 1
. F'(Xi) '————TT—
hi+1+

[y th D E (b b D" (k)

; 1 3 3, an
i’f ‘ﬁ(hl‘*l‘*h')f' (Xi)*...}

- a1 (h l*h "
f'(xji)+%(hj, -h{)f (X')*ETFL_-T#_)f' (xj)+... (A1)

From which it is obvious that second order accuracy [0(h?)] is obtained
?ﬂ for the uniform spacing case; i.e. h;,,= h;. However, if we require the

{ X; to be a function of a uniformly spaced parameter n,

2 n; = no*(i-1)8n 8n = constant (A.2)

W then second order accuracy may be retained without the stringent requirement

Y of a uniform grid.

PO X
Ealah o 2P

Proof:

1

v -

The functional dependence may be expressed as

- .
-

"
-

l'.

X Xj=Xg = a(ni-no)'«b(ni_no)2 (A.3)

and (A.1) may be rewritten as

Py Frixp) = Flixpdehalxg g =2x 4%, ) F " (xg)+ 0,

f' (x4 { [xo*a(nj, =ng ) *b(n;4,-Np) %]

AR

2 2 "
3 ~2[xgratn;=n ) +bin;-n)?]+ [xg*atn;_ -ng)eb(ni_y-n ) JH"(xp)+...
R
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Now we make use of (A.2)

Niei Mo = 18N ny-ng = (i-1)8n;  ny_,-ng = (i-2)8n

50 that the numerical derivative reduces to

Froxp) = f'(x)eu{[aCisn)+bCism?]-2[aci-118n+b(i-1)2(8n)2]
+[aCi-2)8n+b(i-2)2 (M2 " (x)+..
= frixp)+nfadni-20i-1)+(i-1)+(i-2)]+bsn? [12-2(i-1)2+(i-2)%]}

= f'ixj)+bdn?f"(xj)+...
Thus, F'(xj) = f'(x;)+0(8n?)

and the numerical derivative is accurate to second order,
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APPENDIX B 0
B EANY
ez; THE DISCRETE FOURIER TRANSFORM .;-'*.-
4 A
& AR
, PR
This appendix formulates the DFT pair which is used in this report
. » \'i\"‘
;': to gain frequency information from a Limited time history of the fields. ook
" Doy
b Although these equations may be found in texts on signal processing [5] ) ;,
N LAY
. it seemed well to reproduce them here to clarify the relation between the S
‘
% Gy
- generalized parameters and the parameters of interest to us, which are ;bﬁ
A o
, bt
I: time and frequency. This also shows the tradeoff between computer cost *_ l:r
¥ N
(total number of samples) and resolution (spacing in frequency samples). !
& In general, a function, f(t), on the interval 0 < t < T can be expressed z .',,
A A
as an infinite sum of exponentials f&
3: © (i
q f(t) = L Cq ed(2n1/T)t X
:; n=-o ..’
. 3835
; If the function is sampled at discrete points such that . i
P Wl
_ t =00 m=1,2 3, ..., N
; " ;4;’ i
) LA
. then e
A ° 28
" f(t) = f(m) = L Cped(2nm/Nim. Qi
= -0
. PR
4 o gty
" Now, we can take advantage of the periodicity of the exponential '__4,‘.-«_
;' NN,
:' by substituting K-IN for n, where K takes on values only in the range from . .'::,:‘.
! e
g 1 to N. Then we have =
K LY
¥ <
.
: = 0 | - 3nds
:.’ f(m) = ¢ T CK 9 eJ(ZK‘N’/N m eJ(ZQ,NTI'/N m r ety
W 2:-& K=1 ’ L)
¢ c
® N . AN
=% T CK’geJ(ZK‘n/N)m G
Q== K:‘ "_ ‘\
% 00
N A @ 1
3 =L gJ(2Ku/Nm I CK,Q AU
K=l R.="‘m »°
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The last term is merely a summation of constants, so we can define a

new constant

.
F(KY = T Ckg .
L:..oo ’
Thus
N .
K=1
or equivalently
N-1 )
ftm) = I  F(mej{2nt/N)m
n=0

In order to evaluate the coefficients F(n), we multiply both sides

by e~ dZMM/N 504 sum from m=0 to N-1.
N~1 N-1 N-1
I fimeJ2mm/N = £ T F(nej2mm(n-L)/N .
m=0 m"-"o n:o

At this point, we make use of the orthogonality relation
N~1 . 1 r=kN k an integer
T eJ2tmr/N .
m=0 0 otherwise
By letting n-f=r in (B.1), we see that the RHS is only non-zero if

n=+r=8+kN, Since n=0, 1, ..., N-1 this is only true at one point., For

convenience, let £ be in the range 0 to N-1, then k must be zero for the
condition to be satisfied. Thus,
N-1 N-1

I OF(m £ ed2mn-I/N _pigy.N
n:o m:o
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and (B.1) becomes (dropping the normalization constant N)

N-1 .
I fme 2N | £y
m=0

and our transform pair is thus
N-1

fim) = £ F(med(2nm/Nm m=0, 1, 2, ..., N-1
n=0
N-1 -j(2mn/N)n

F(n) = £ f(me™ =0, 1, 2, , N-1
m=0

We define the argument of the exponential as wt, so that

wt = 2m(mn/N)

or equivalently
ft = mn/N,

We have already seen that the time is given by
.omT
tex

and
T =Ntg

So that

and
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APPENDIX C Y

A LEAST SQUARES FIT TO A YT

CUBIC POLYNOMIAL RS

o

:tq

v

a0

The general equations for a least squares fit of a discrete set of t%:j

A

data points to a polynomial of any order may be found in most texts on tiiﬁ
«_é: ‘:

numerical analysis Bﬂ. However, with the inclusion of boundary conditions *
T

.
*
El
]
.
]

on the curve, some of the variables may be eliminated and the equations

4

a
a
.I.J._l_‘.

.
)3
»
PR ]
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are changed. For our problem, the value of the curve at the endpoints

10e T e,
x

is not known, but the first derivative is. This appendix, therefore,
develops the equations necessary to find the cubic curve which minimizes ',

the square of the error from the data points while retaining a zero first

derivative at the endpoints,
Given a set of data points [xi;yi] i=1, 2, ..., mon the interval

0<x<1 (note that all intervals may be normalized to this) and the cubic

interpolant

Y=a+bx+cx2+dx?

»

-

-ty
v

and the constraints %; = 0 at the endpoints. We wish to minimize the error

.l.

g

m
E= I (Yj-yp)?
i=1

with respect to the variables a, b, ¢, and d. However, we can eliminate

two of the variables because of the constraints,

Y pegce3dx?

|
Y dx



A R St S b

Now we minimize the error with respect to the two variables, a and d.

9E _ L oY
E-ZE(Ylyi)—é—a-L—o
m
Y.
'8‘5-=22 (Y,-y;)—Y-L=O
i=1 ad

aYi = x;%(x;=3/2)

therefore our equations are

m
I (Y;-yi) =0
i=1

IoYi-yidx;Bix;=3/2) = 0
i=1

Yi = ardx;2(x;-3/2).

So we have two equations from which our two unknowns (a and d) may be found,

- ‘l\‘\‘\
h \,f\
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